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Abstract 

We consider a model sensitivity problem of a dependent variable on several exogenous 

variables while the dependent variable has some missing data. Under certain assumptions 

on the model of selected sample and on the selection mechanism, a mixture model is derived 

and some statistical properties are discussed. This model gives a way to derive Pearson- 

Lawley (PL) correction formula for the covariance matrix and leads to a modification when 

the missingness is not ignorable. A sensitivity analysis is then discussed for the PL method. 

Finally, this modified PL method is applied to a real data set from Project A of Office of Naval 

Research. The results show some difference from that of using Pearson-Lawley method or of 

using listwise deletion. 

KEY WORDS: sensitivity analysis, nonignorable missingness, Pearson-Lawley (PL) for- 

mula, modified PL method. 

RUNNING TITLE: Sensitivity Analysis for PL Corrections 



1    Introduction 

The selection of individuals is common in educational institutions, cooperations, and military 

organizations. In this situation, a very important issue is to establish a model for a dependent 

variable like job performance on some exogenous variables like test scores and other background 

variables for the population such that the prediction and its validity can be studied. Since only 

. those being selected can have measurements of job performance; how to deal with the selection of 

candidates or missingness of the performance measurements of unselected ones is the problem we 

want to study in this paper. 

In terms of the missingness, there are two basic types of missing mechanism (Little k Rubin, 

1987) depending on the relationship of the missingness and the dependent variable of the unselected 

candidates. One is called missing at random (MAR) or ignorable nonresponse. In this case, a 

candidate being selected or unselected is independent of his performance measurements but may 

depend on the exogenous variables. This missingness is ignorable in the sense that estimates can 

be obtained based on the likelihood function of the observed sample and ignoring the missing 

observations. The other missing mechanism is called nonignorable missingness, in which case an 

individual being selected or unselected may depend on the performance measurements. 

For the first mechanism, or MAR, many statistical techniques have been proposed (see, e.g., 

Little & Rubin, 1987; Rubin, 1987). Among those methods, the simplest one is that of using only 

the observed sample to do statistical inference. This is known as listwise deletion in the missing data 

literature. In addition to listwise deletion, there are many regression-based adjustment methods like 

Pearson-Lawley correction, the maximum likelihood procedure, and multiple imputation techniques 

(Rubin, 1987). All of these methods, except listwise deletion, often give good statistical inference 



for MAR cases. 

When the data is not missing at random, the situation is more complicated. It is known that 

methods assuming MAR may often be quite biased when the missingness is nonignorable. Heck- 

man (1976) proposed a selection model which assumed a missing data mechanism in terms of a 

conditional probability of missing or not missing given the observed measurements. A least-square 

correction was proposed by Olsen (1980). Lee (1982) gave some approaches using a transforma- 

tion based on a bias function. Muthen and Jöreskog (1983) pointed out that nonlinearity and 

heteroscedasticity might occur in nonrandomly selected samples even though the population it- 

self was normally distributed. Recently Little (1994) proposed two unified models for the data 

and missing mechanism, which include random-coefficient selection model and random-coefficient 

pattern-mixture model. 

' It is often necessary to make some assumptions about the missing mechanism for obtaining some 

statistical inference on a data which involves nonignorable missingness. In this case, a sensitivity 

analysis is interesting which show how much outcomes are affected by the assumptions of the 

missing mechanism. Allen, Holland, and Thayer (1994) discussed such a sensitivity analysis for a 

mixture model (Rubin, 1987) and simplified selection modeling. Brown and Zhu (1994) explored 

several families of nonignorable missing mechanisms and proposed a compromise solution which 

provides some protection against nonrandomness. 

In this paper, we study the selection problem with one performance variable and several ex- 

ogenous or covariate variables. A typical example is from military enlistment and job assignment, 

where the hands-on job performance is of primary concern, while selection is based on test scores 

and other background variables. In this situation, the Pearson-Lawley correction for the covariance 

matrix is commonly used for validity assessment. 

We first discuss model specification and some statistical properties in Section 2. In Section 3, a 

modification of the Pearson-Lawley method is derived for the case with nonignorable missingness. 



This method gives the same formula as the Pearson-Lawley under the MAR. In Section 4, a 

sensitivity analysis is presented to show how much outcomes are affected by the assumptions. 

Some discussion is given on how to choose the unknown parameters according to the possible 

information. At last, this method is applied to a real data set from Project A of Office of Naval 

Research (ONR). Comparing with the PL method or the listwise deletion, the modified Pearson- 

Lawley method gives some different conclusion. 

2    Model specification 

Suppose y is the performance measurement of interest and x is a vector of exogenous variables 

related to selection. Furthermore, we assume that x is observed always, no missing data occurs; 

but y is observed only if the individual is selected. Usually there is no information available for y 

in the unselected sample. Because of this, we may only make a model assumption for the selected 

sample. 

Let R be an indicator of selection such that R — 1 if a candidate is selected and y is observed, 

and R = 0 if the candidate is unselected and y is missing. 

2.1     A mixture model 

Without loss of generality, we assume that the means of y and x are all 0, otherwise they can be 

centralized by transformations. Then we assume that when R = 1, 

[y\R=l} = xß + c, e~iV(0,<72) (1) 



for some parameters ß and a2. This assumes a normal distribution for th conditional distribution 

of y given x and when y is observed. 

One advantage of only making assumption on the selected sample is that this assumption can be 

checked since we have observations for both y and x in the selected sample. Note that the model of 

(1) may be quite different from assuming a linear model and normality over the whole population 

as in Heckman (1976), Olsen (1980), Lee (1982), or Muthen and Jöreskog (1983). As Muthen and 

Jöreskog pointed out, when the whole population follows a linear model with normal residuals, a 

nonrandom selection procedure results in the model of the selected sample being neither linear nor 

normal. 

Now suppose there is a selection variable s (a latent variable) such that for some function g(-), 

s = g(x) + 6,    R = < 
1    if s > 0 

(2) 
0    otherwise 

where g(x) contains all contribution to the selection from the exogenous variable x and 6 is a 

residual term which may be viewed as the contribution from something other- than x. This S is 

not observed and may depend on both y and x. 

Let [y] be the distribution of y. This notation may be a cumulative probability function, or a 

probability mass function when y is discrete, or a density function when y is continuous. Under 

the above assumptions, we have a mixture model 

b|x] = [R = l|x][i/|x, R=1] + [R= 0|x][y|x, R = 0] (3) 

where [y|x, R - 0] is a distribution of y given x for the unselected sample. This model has been 

proposed by Glynn, Laird and Rubin (1986) and is named a mixture model. Recently, Allen, 

Holland and Thayer (1994) applied a similar model to nonignorable nonresponse problems for a 



discrete variable y. 

With notation as before, let 

p = P(R=l\x) 

be the selection rate for given exogenous variables x, then 

Mx] = p[y\x, R = 1] + (1 - P)[y\x, ÄiO] 

With some probability calculation, we have the following result. 

Result 1.   Let [y|x], [y\x,R = 0], [y\x,R = 1] be corresponding probability mass or density 

functions. Then 

b|x'R~ 0] " [ä^öR [&=%*] [2/|x'"Ä = 1] (4) 

r , , _ [y|x, i? =l][fl= l|x] _ [y|x,JZ=l]p 

When y is a discrete response variable, this result and a proof has been given in Allen, et. al. 

(1994). A similar argument can be used for the case when y is a continuous variable and leads to 

the Result 1. 

When the missingness is at random, we have [R = 0\y,x] = [R = 0|x] and [R = l|y,x] = 

[R = l|x]. Hence from (4), the distribution of y given x for the whole population is the same as 

that of the selected sample. However, for many situations, the missingness may not be ignorable, 

that is [R = 0|y, x] may not be independent of y. In this case, we need to know the distribution of 

y given x and R = 0 given x. 

The result of (4) gives a relationship for the distribution of y given x among those unselected 

and the distribution of y given x among those selected. The [R = l\y,x] specifies a selection 

mechanism, or similarly [R = 0|y,x] is a missing data mechanism, for which we need to make 



assumptions. The result of (5) expresses the distribution of y given x for the whole population 

that of the selected sample and the selection mechanism. 

After assuming a model for the selection mechanism, the Result 1 will lead us to a model for 

the full population. A sensitivity analysis will show how much conclusions for the model of t/]x 

may be affected by varying these assumptions. This is discussed in the later Sections. 

2.2    A logistic selection mechanism 

Assuming (2), we have 

[R= l|y,x] = P[s > 0|y,x] = P[6 > -g(x)\y,x] 

Hence, the selection mechanism requires a conditional distribution of residual of the selection 

variable s after given y and x. 

To be explicitly workable, we will take a quadratic logistic model for the conditional distribution 

of S given y and x, 

[6 > 0|y,x] = x + exp{_K{XQ(x) + Ai(x)y + A2(x)y2)) (6) 

where K = v/y/3, A0(x), Ai(x) and A2(x) are coefficients which may depend on x.   Under this 

assumption, we have 

Result 2. If [%,x] is given as in (6), then 

- My,x] - j + exp(_K(ff(x) + Ao(x) + Ai(x)y + A2(x)y2)) (7) 



and 

E(6\y,x)   .=    A0(x) + A1(x)y + A2(x)j/2, (8) 

V(6\y,x)   =    1. (9) 

2.3    Statistical Properties of the mixture model 

First, let us look at the distribution of j/|x for the whole population. From (5) and (7), we have 

[y|x]    =    p[i/|x,Ä=l]/[Ä=l|y,x] 

=    P/(j/|x,Ä=l)+pexp(-/c(ff(x) + Ao(x) + A1(x)2/ + A2(x)2/2))/(y|x)Ä=l) 

=   pf(y\x,R=l) + (l-p)f(y\x,R = 0) 

where , 

f(y\x, R = 0) = -JL- exp[-«(ff(x) + A0(x) + Ai(x)y + A2(x)2/2)]/(2/|x, R = 1) (10) 

must be a density function. This requires certain constraints on the parameters of A0(x), Ai(x) and 

A2(x). Without loss of generality, we may vary Ai(x) and A2(x) but treat A0(x) as a normalization 

parameter. Then from (1) and (10), we see that [y\x, R = 0] follows a normal distribution with 

Mean:      p = (xß/a2 - /cAi(x))r2 (11) 

Variance:      r2 = (2«A2(x) + l/a2)~l (12) 

where 2KA2(X) + I/o-2 > 0 is a constraint for A2(x). Therefore, we have the following result. 



Result 3.  Under the assumptions of (1) and (7), [y|x] has a mixture distribution resulting from 

two normal densities. 

h\x]~pN(xß,<r2)+(l-p)N(vi,T2) (13) 

where A2(x) is selected such that 2«A2(x) + I/o-2 > 0. Moreover, the mean and variance of [y\x] 

is given as follows. . 

E(y\x)    =    pxß + (l-p)n (14) 

V(y\x)   «=    p<T2 + (l-p)r2 + p(l-p)(x/?^)2 - (15) 

It is of interest to look at the correlation between y and the selection variable s given x (see 

equations (1) and (2)). This correlation is an important indicator for whether the missingness is 

ignorable or not. In fact, if the .missingness is ignorable, then s|x is independent of y; otherwise 

if cor(y, s|x) =0 then the selection might be unrelated to the dependent variable y and we could 

expect that the missing is at random. With some calculation, we have the following result. 

Result 4. Under the assumption of (1) and (6), the correlation of y and s given x is 

p = corr(y, s|x) = cov(y, 6\x)/^/V(y\x)V(6\x) (16) 

where V(y\x) is given at (15) and 

cov(y,S\x)    =    A1(x)F(2/|x) + A2(x)co«;(2/,2/2|x) 

V(S\x)    =    l + A1(x)2K(2/|x) + A2(x)2I/(2/
2|x) + 2A1(x)A2(x)co?;(2/,2/2|x) 



and 

cov(y, 2/2|x)    =    (3p-p2)cr2x/?+(2-p-p2)//r2 ' 

+p(l - p)[(xß + p)(xß - pf ~ <T
2
V - r2x/?] 

V(y2\x)    =    (3<74 + 6<r2(x/3)2 + (x/?)4)p + (3r4 + 6r V + p4)(l - p) - 

. [p(^2 + (x/?)2) + (l-p)(r2 + p2)}2 ■ 

Remark 1.  The p, the correlation between y and s given x, may depend on x unless Ai(x) and 

A2(x) are constants. 

3    A modification of the Pearson-Lawley formula 

3.1     Pearson-Lawley correction 

It is well known that many statistical analyses, such as linear regression, factor analysis, and 

structural equation modeling can be done using only the mean vector and the covariance matrix 

without having raw data. In fact, the first two moments give sufficient statistics under the normality 

assumption. How to get a good estimate of the mean vector and the covariance matrix has received 

a great deal of attention in statistical literature. 

When selection or missing data comes in, how to estimate the mean vector and the covariance 

matrix is not straightforward. Pearson (1903) and Lawley (1943, 1944) gave adjustment formulas 

for the mean and covariance matrix for the population after giving the selected sample. Suppose 

y is the dependent variable which has missing data and x are the covariates that are observed 

completely. Let z = (x',y)', then under the assumption of MAR or the selection is ignorable, the 



PL correction formulas are maximum likelihood estimates without constrains on the mean and 

covariance matrix of y and x. Let fi* and E* be the mean vector and the covariance matrix based 

on the observed sample. Then Pearson-Lawley correction is given as follows. 

Pz    —    lAn,- szxsxx (Px _ Px) 

7.7. ^7Y«' JZ2 
.* — 1 fx-\* 

ZX^XXV^xx c)E: XX ^xz 

(17) 

(18) 

If we decompose the matrix according to the size of x and y and denote 

/ \ 
En      Sl2. 

-*ZZ 

E21    £ 22 

then it is not difficult to find that 

En 

E21 

E22 

E> 

J/X^XX ^xx 

yy ~ LyxlLxx — ^xx ^xx^xx J^xy 

Hence with Pearson-Lawley adjustment, the covariance matrix for the exogenous variables is just 

the covariance matrix obtained from the total sample. Adjustment is made only on the covariances 

between x and y and on the variance of y. In contrast to the analysis based on the observed 

sample only ( listwise deletion ), this correction may give significant improvement for the statistical 

inference. 

The adjustment formula (18) can be derived from our model assumption when missingness is 

ignorable. In fact, when missingness is ignorable, the selection is based on x and is independent 

of the performance score y. In the other words, the 6 in (2) is independent of y. Then given the 

10 



exogenous variable x, the selected sample and the unselected sample follow the same distribution. 

Under the model of (1), we have 

[y\x] = [y\x,R=l]~N(xß,a2) 

Hence after having observations, we can model y for the total population as follows. 

y = x/T + € (19) 

where ß* is estimated from using the observed sample, ß* = L^x^xy The e is a random variable 

which is independent of x and has mean 0 and variance, 

-2   ^* y^*    r*-l^* 
"   —    yy ~ ^yx^xx ^xy 

Then the covariances between y and x and the variance of y can be calculated from (19). 

Result 5: When the selection is ignorable and [y|x, R = 1] follows the distribution of (1), we have 

1. ßy=xß* + (/*;- x*ß*). 

2. cov(y,x) = EJxEx'xExx. 

3. cov(y,y) = E*y - EJx(EXx - EXx ExxEx"x )sxy 

which is just the same as the Pearson-Lawley adjustment formula. 

We have to note that all the above procedures are based on the assumption of selection being 

ignorable, that is we have missing at random. This is a crucial condition to derive the Pearson- 

Lawley formula. Without this assumption, or the missingness not being ignorable, the Pearson- 

Lawley adjustment may be seriously biased. A modified scheme is proposed as follows. 

11 



3.2    A modification of the PL formula 

Assume the mixture model of (13), first we shall discuss more about the choice of parameters of 

Ai(x) and A2(x). Since both of these parameters are unknown, we have to specify them subjectively. 

There may be no information about them from observations. Hence, from the point of view of 

simplicity and plausibility, it is reasonable to first assume that A2(x) is independent of x. Let 

v = (2«A2<r2 + I)"1 (20) 

Then by (12), r2 = va2 and 

H = v(xß - KAI(X)<T
2
) = «[1 - KA^X)*

2
/^)]«/? 

Now we want to choose a coefficient Aj.(x) such that it is proportional to x/? and let 

m = v(l-«A1(x)<T2/(x/3)) (21) 

Then this m is also a constant. Under these assumptions, the mean and the variance of the 

unselected sample is just a scale transformation of the mean and the variance of the selected 

sample, that is, /i = mxß and T
2
 = va2. 

In the following discussion, we will use the notations of m and v. Under these, we have Ai(x) 

= (v - m)x.ßl(vK<r2) and A2 = (1 - V)/(2VK<T
2
). More over, the formulas in Result 3 and Result 

4 can be represented by m and v accordingly. 

Now we can give a modification of the Pearson-Lawley formula. 

12 



Result 6. Under the assumptions of (13), for given v > 0 and m, then 

Cov(y,x)    = (p+(l-p)m)/?'Exx = /i(m,p,<72)/?'Exx (22) 

Cov(y,y)    = (p + (1 -p)v)a2 

: ■ +[(p+(l-p)m)2+p(l-p)(l-m)2]ß'Zxxß 

= f2(v,p,<r2)a2 + f3(m,p,a2)ß'-£xxß (23) 

where fi(m,p,a2), f2(v,p,a2) and f3(m,p,(T2) are functions of the selection rate p, the residual 

variance a2 and the parameters m and v. For simplicity, we will denote them by /i, /2 and /3 in 

the following discussion. 

Finally, a modified Pearson-Lawley formula can be obtained by replacing ß and a2 in (22) and 

'(23) by estimates ß* = S^Iocy and ^*2 = Syy - Syxsxxsxir After considering the centering, 

the mean of y can be estimated as 

'        fiy = (p+(l-p)m)fiJ*+fi;-^J* (24) 

4    Sensitivity analysis 

A sensitivity analysis is of interest to show how much outcomes are affected by assumptions about 

unknown information and parameters. Such an analysis was performed for a nonignorable nonre- 

sponse problem in Allen, Holland and Thayer (1994). Here we will do a sensitivity analysis for the 

Pearson-Lawley adjustment and its modification to the choices of the parameters m and v. 

Suppose that we are interested in a regression analysis of the performance variable y on the 

exogenous variables x for the population. The regression coefficients and R2 can be obtained from 

13 



the covariance matrix between y and x. According to the previous discussion, there are three 

versions of the covariance matrix; one is from using the selected sample only, one is from using the 

Pearson-Lawley adjustment, and the other is from using the modified PL method. 

For example, under the assumption of the selection mechanism (7) and the mixture model (13), 

an ordinary least-square (OLS) estimator from using the modified PL method would be ':. 

ßmpl = £xxCov(x, y) = flß* 

where /?* is an estimate from using'the selected sample only and fx is a factor defined in (22). 

In the following table, we list formulas of variance, covariance, regression coefficients and R2 

for using the selected sample only, using the Pearson-Lawley method and using the modified PL 

method. 

Method Cov(x, y) ß Cov(y, y) R2 

Selected 

sample 

=* ß* ^yy = V, r'Sxx^/K i Rl 

PL method Xxxß* ß* &*2 + /T'Exx/T = Vpl ß*'Xxxß*/Vpl = R2
pl 

Modified 

PL method 

fiXxxß* fiß* 

—  Vmpl 

flß*'^xxß*/Vmpl 

- R2 

14 



4.1     Sensitivity of ß and R2. 

Now let us look at the sensitivity properties of the coefficients ß and R2 for various choices of 

parameters m and v under the model (13). 

First, when m = v = 1, that is Ax(x) = 0 and A2 = 0, the selection mechanism at (7) depends 

on x only. Hence the selection (or missingness) is ignorable. The distribution of the unselected 

sample is the same as the distribution of the selected sample. In this case, /i = /2 = /3 = 1, 

and the formulas of (22) and (23) become the same as the PL adjustment formulas. The same 

statistical inferences can be obtained for ß and R2. 

Now suppose m = 1. In this case, the mean of y\x is the same for the selected and the unselected 

samples. Adjustments may be taken only on the variance of y\x for the unselected sample. From 

Result 6, fi=f3 = 1, so there is no adjustment on the covariances between yand x. Hence the 

regression coefficients are the same for both PL adjustment and the modified.PL method. The 

difference of the Vmp, and Vpi is given by (/2 - \)a*2, which is positive if v > 1 and negative if 

v < 1. Hence comparing with R^,, R2, is an overestimate if v > 1 and an underestimate if v < 1. 

Another interesting case is when v - 1, that is, the variance of the selected sample is the same 

as the variance of the unselected sample. From Result 6, f2 = 1, the modified PL formula of the 

covariance between y and x has a scalar factor of fi to the PL covariance. This /i is also the scale 

factor which affects the slope ß. It can be seen that this factor is a convex combination of 1 and 

m with coefficients p and (1 - p), respectively. If m is less than 1, then /i < 1, the regression 

coefficients from using the selected sample or using the PL method will be over estimated. On the 

other hand, when m is larger than 1, the ß will be underestimated from those two methods. Since 

/3 = A2 +p(l - p)(l - m)2 is always larger than ft, R2
mpl will be smaller than R2

pl if m < 1. 

Generally, when neither m nor v is one, /i, /2 and f3 are not necessarily one. Similarly as 

above, /i is the scalar factor for the covariance between y and x and the regression coefficient 

15 



ß. However, the comparison for R2
mpl and R2

pl is not so clear since R2
mpl depends on both v and 

m. In Figure 1, we give some contour plots of the relative bias of R2
} comparing with R2^ ,, i.e. 

(Rji - Rmpi) I Rmph °ver the parameters m and v after giving p, R2
mpl and a2. From these plots, 

we can see that 

1. In general, R2
} is sensitive to the variation of m and v. For most of the given values of 

p = 0.25 or 0.5 and i?^p, = 0.25 or 0.5, it is quite possible that the relative bias of the R2
l 

will be larger than 10% or 20%. 

2. When v > 1 or m < 1, the relative bias is positive, which"means the R2
: is often an 

overestimate for the population R2. However, it can be an underestimate when the v < 1 or 

m > 1. 

3. The relative bias becomes large when the selection rate p is small or the population R? is 

small. 

4.2    How to get plausible values for m and v 

After seeing the sensitivity of ß and R2 to the values of m and v in the modified PL method, we 

now discuss on how to obtain some plausible values for the parameters m and v. 

First, let us note that for many practical situations, the average score of unselected sample is 

often smaller than that of selected sample. Hence it is often that m < 1. On the other hand, the 

variance of the performance scores from the unselected sample might be larger than that of the 

selected sample, that is v will be usually larger than 1. The question is how small this m or how 

large that v could be. 

It is obvious that we need at least two pieces of information to determine the values of m and 

v.  For a given study, people may have some prior information about these two parameters.  If 

16 



reasonable ranges can be obtained for m and v from experts, then a sensitivity analysis can be 

given for the regression analysis. 

Here is a practical way to obtain the value of v. As in the definition, v is the ratio of the 

variance of unselected sample to that of selected sample. In many situations, it might be often 

true that the variation ratio of y is similar to the variation ratio of x. Then the v value can be 

obtained from the ratios of variances of x between unselected and selected sample. 

For the value of m, it is useful to look at the correlation of y and the selection variable s given 

x. This is just the correlation of y and the residual 8 of regressing s on x. Under the model (13) 

and the selection mechanism (6), its formula is given at (16). For given x, ß and residual variance 

a2, pis determined by m and v. Figure 2 gives some contour plots of p over various m and v given 

p — 0.25 or 0.5, x/? = 1 or 2 and a2 = 1. From this Figure, we see that p is not very sensitive 

to v. This is especially so when v is larger than 1. Hence, p and m can be roughly determined 

from one to another. When m < 1, p is positive; when m > 1, p is negative. In other words, if 

the selection residual is positively correlated with the performance score, then the selected sample 

will have a better average performance score than the unselected sample for given values of x. On 

the other hand, when the unselected sample has a larger average score, then the residual 6 might 

be negatively related to the performance score y. 

For a given data set, p is known, and xß and a2 can be estimated from using the selected 

sample. Then a figure of p on m and v can be given as in Figure 2. 

Note that p is a correlation coefficient of y and 6. The residual 6 can be viewed as the con- 

tribution from several other exogenous variables which are not used in the selection. Some prior 

information about those extra exogenous variables might be available from the researchers who 

design or perform the selection. For example, they may give a rough range for how many are the 

other variables that are not used in the selection and how much proportion will the other variables 

contribute to the selection comparing with the variables which are used in the selection. 

17 



Remark 2. Since the formula of p and Vmpi are not simple functions of m and v, it is impossible to 

solve them for m and v. It is not necessary, however, to get an exact solution for given p because 

both the v and m are only estimates. The contour curves shall be enough to give rough values for 

the parameters m and v. Moreover, the contour plots will show some sensitivity results. 

5    Application to an ONR data set 

To illustrate the above approach, we'-apply this method to a data set of Batch A of the Project 

A Concurrent Validity Study ( see Young, Houston, Harris, Hoffman & Wise (1990) ). This data 

set included Hands-on Job Performance score, 10 subtest scores of the Armed Services Vocational 

Aptitude Battery (ASVAB) and some other test scores and background variables for nine different 

jobs. There are 4039 total observations in this dataset. The observations are randomly sampled 

from the enlisted military persons. 

We are interested in a regression analysis for the whole population of the Hands-on job per- 

formance score on the ASVAB subtest scores. The 10 ASVAB subtests are Arithmetic Reasoning 

(AR), Auto & Shop Information (AS), Coding Speed (CS), Electronics Information (El), General 

Science (GS), Mechanical Comprehension (MC), Mathematics Knowledge (MK), Numerical Op- 

erations (NO), Paragraph Comprehension (PC) and Word Knowledge (WK). For these ASVAB 

variables, there is a reference population for the selected 4039 sample, which is from the all 650,278 

military applicants of 1991 fiscal year. The means and covariance matrix of the ASVAB from the 

650,278 applicants is given in Table 1 (a) (see Wolfe et al., (1993)). This sample is taken to be 

the population from which all the military enlistments are selected and the 4039 Batch A persons 

are sampled. By doing this, we assume that the distribution of the ASVAB subtest scores for all 

military applicants will be similar in a consecutive years. 
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First, Table 1 (b) gives the mean and covariance matrix for the 4039 selected sample. This 

shall be a consistent estimate for the covariance matrix of ASVAB of the total enlisted population. 

It can be seen that there is some big difference between the population covariance matrix and this 

covariance matrix of the selected sample. This implies that the selected (or enlisted persons) are 

not just a random sample from the applicant population. In fact, the selection is based on the 

ASVAB subtests and some other variables. 

To check the linearity and normality, we perform a regression analysis of y (hands-on job 

performance score) on the ASVAB for the selected 4039 sample. The residuals of this regression is 

plotted against the predicted y values on Figure 3. This residual plot looks quite normal. There 

is no clear violation to the assumption of linearity. Figure 4 gives the histogram and its smooth 

density curve for those residuals. Although the density curve show a slight skewness to the left, it 

is still symmetric. So" the normality assumption for the residuals might be reasonable. 

In order to give a sensitivity analysis, we need assess the values for m and ». Looking at the 

ratios of variances for the 10 ASVAB variables between the population and the selected sample, we 

find that they are between 1.19 and 1.47. Since the ratio of the variances between the unselected 

and selected sample may be smaller than that between the population and the selected sample, we 

will expect that the values of v is between 1 and 1.47. For the following analysis, we will take the 

range of v to be from 1 to 1.5. 

From the regression analysis of y on the ASVAB variables for the selected sample, we obtain 

the following information: the residual variance a*2 = 92.05, the variance of y from the selected 

sample V, = 108.24, the adjusted mean of y, /iy = ^xß*+ ^-^J* = 69.77, and the ß*'Xxxß* = 

18.79. Finally, according to the military enlistment officers, the rate of enlistment to all military 

jobs is about 33%. This rate can be viewed as the selection rate p since the 4039 observations are 

randomly sampled from the enlisted population. Then the contour plot of p = corr(y, s|x) can be 

obtained, which is given in Figure 5. 

19 



Suppose the prior information about the p is that p will not be larger than 20% and the 

correlation is non-negative. Then from the Figure 3, we know that the range for m is between 0.95 

and 1.0. With these values of m and v, Table 2 gives several adjusted covariance between Hands-on 

score and the ASVAB subtest variables. Since the values of m is close to 1, the covariances of?/ and 

the ASVAB do not differ a lot. However, the difference of the var{y) between the Pearson-Lawley 

method and the modified Pearson-Lawley method is apparent. 

In the Table 3, the standardized regression coefficients and their t-values are listed. In the last 

row, the R2's of the regression are given. We can see that the modified Pearson-Lawley method 

will have slightly smaller values for the standardized coefficients of ß. However, the difference for 

R2 is clearer. When v = 1.5, the relative difference between the PL method and the modified PL 

method is about 36%. This is because the modification assumes that the mean of the unselected 

sample is smaller than the selected sample, while the variance of the unselected sample is larger 

than the selected sample. Both of these assumptions are quite reasonable for a selection problem 

like this. 

6    Conclusion 

In the above study, we considered effects of the nonignorable selection on the Pearson-Lawley 

adjustment formula for a covariance matrix. The PL formula gives a good correction for the 

selection bias when the selection is at random, that is, the missingness is ignorable. However, 

when this condition is not satisfied, the PL formula may be biased. The bias will depend on the 

model specification and the selection mechanism. 

A mixture model with a logistic selection probability is proposed in this paper. Based on this, 

a modified Pearson-Lawley formula is derived. This gives a further correction to the PL method 
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when the missingness is not at random. From the sensitivity analysis, we can see to which degree 

the PL formula will be biased when the selected sample has different mean or variance than that 

of the unselected sample. For some cases, this bias might be serious. Typically, the relative bias 

of R2 for a regression can easily be 20 or 30 percent. 

;■■ To get the information of the modification parameters, one may assume that the variance 

ratio of the dependent variable between the population and the selected sample being similar to 

that of independent variables. This will provide a reasonable range for one of the modification 

parameters. The other parameter may be accessed from the prior information about the correlation 

of the performance variable y with the residual of the selection variance s. 

Finally, it is very common in practice that the selected and unselected samples have differ- 

ent means and variances. In fact, it is the goal of a selection procedure to choose some special 

candidates who have better performance ability from a population. Hence it is quite often that 

a selection will be not at random or the missing is not ignorable. It shall be valuable to have 

some further investigate for the selection mechanism and use an appropriate modification on the 

analysis to a data set which involves selection. 
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Figure 1: Some contour plots of the relative bias of R2, vs R2
mpl on the parameters m and v for 

given p, R2
mpl and a2. 
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Figure 2: Some contour plots of the correlation p — corr(y, s|x/3) on the parameters m and v for 
given p, xß and a2. 
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Figure 3: Plot of the residual v.s. predicted y. 
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Figure 4: Histogram and the smoothed density curve for the residuals. 
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Figure 5: A contour plot of the correlation p — corr(y, s\xß) on the parameters m and v for the 
ONR project A data (n=4039). 
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Table 1.xls   8/29/94 

Table 1 a). Mean and covariance matrix of the ASVAB 
from the population sample (n=650,278)* 

AR AS CS El GS MC MK NO PC WK 

AR 74.743 31.736 26.701 37.271 46.346 48.406 53.106 32.583 39.540 37.910 

AS 31.736 84.047 4.174 54.333 41.836 51.718 15.659 3.449 24.755 29.437 

CS 26.701 4.174 61.025 10.175 17.046 15.769 27.678 40.069 24.006 18.832 

El 37.271 54.333 10.175 78.428 48.520 50.956 28.442 10.307 31.348 34.803 

GS 46.346 41.836 17.046 48.520 76.959 51.060 42.246 19.338 42.469 46.458 

MC 48.406 51.718 15.769 50.956 51.060 83.306 39.167 16.667 35.271 36.735 

MK 53.106 15.659 27.678 28.442 42.246 39.167 75.500 34.543 34.581 31.744 

NO 32.583 3.449 40.069 10.307 19.338 16.667 34.543 64.209 25.266 19.116 

PC 39.540 24.755 24.006 31.348 42.469 35.271 34.581 25.266 63.426 42.849 

WK 37.910 29.437 18.832 34.803 46.458 36.735 31.744 19.116 42.849 54.083 

Mean 50.664 51.409 52.266 50.333 50.615 51.941 51.210 52.512 51.156 51.310 

Source: Table A-l of ECAT Draft report by Wolfe, et. al. (1993). 

Table 1 b). Mean and covariance matrix of the ASVAB 
from the selected sample (n=4039) 

AR AS CS El GS MC MK NO PC WK 

AR 51.548 19.597 8.621 18.701 28.307 27.887 37.579 10.216 20.553 20.925 

AS 19.597 70.809 -5.110 36.498 31.474 38.293 11.789 -7.986 15.709 18.073 

CS 8.621 -5.110 43.887 -1.333 2.060 -0.282 10.810 22.190 6.799 3.131 

El 18.701 36.498 -1.333 54.846 31.354 34.859 17.237 -4.385 16.573 21.284 

GS 28.307 31.474 2.060 31.354 63.783 34.049 28.528 -0.058 29.167 37.200 

MC 27.887 38.293 -0.282 34.859 34.049 63.253 26.133 -3.704 18.858 22.077 

MK 37.579 11.789 10.810 17.237 28.528 26.133 53.213 13.307 19.818 21.583 

NO 10.216 -7.986 22.190 -4.385 -0.058 -3.704 13.307 40.591 2.553 0.043 

PC 20.553 15.709 6.799 16.573 29.167 18.858 19.818 2.553 43.046 27.389 

WK 20.925 18.073 3.131 21.284 37.200 22.077 21.583 0.043 27.389 43.893 

Mean 53.161 54.484 51.661 52.158 51.786 53.467 51.221 52.762 51.787 50.920 



Table2.xls   8/29/94 

Table 2: Covariances and their adjustements 
between Hands-on performance scores and the ASVAB 

varaibles for different v and m values 

No_adj PL Modified PL 

Para      v 1 1.5 1.5 1 

Para      m 1 1 0.95 : 0.95 

factor    fl 1.000 1.000 0.967 0.967 

factor    f2 1.000 1.335 1.335 * 1.000 

factor    f3 1.000 1.000 0.935 0.935 

HDON HDON 108.237 110.839 141.674 140.447 109.611 

HDON AR 11.956 17.636 17.636 17.046.. 17.046 

HDON AS 30.546 35.740 35.740 34.543 '" 34.543 

HDON CS -1.887 2.567 2.567 2.481 2.481 

HDON El 19.576 27.316 27.316 26.401 26.401 

HDON GS 16.127 22.023 22.023 21.285 21.285 

HDON MC 24.673 30.906 30.906 29.871 29.871 

HDON MK 11.841 15.773 15.773 15.244 15.244 

HDON NO -3592 1.925 1.925 1.860 1.860 

HDON PC 4.868 8.528 8.528 8.242 8.242 

HDON WK 6.073 10.700 10.700 10.341 10.341 



Table3.xls   8/29/94 

Table 3: Standardized regression coefficients, t-values and RA2 
for different choices of v and m values 

No _adj PL Modified PL 

V 1 1.5 1.5 1 

m 1 1 0.95 0.95 

fl 1 1.000 0.967 0.967 

£2 1 1.335 1.335 1.000 

£3 1 1.000 0.935 0.935 

Beta t Beta     t Beta t Beta t Beta t 

AR -0.027 -1.211 -0.032   -1.312 -0.029 -1.140 . -0.028 -1.102 -0.031 -1.269 

AS 0.270 13.604 0.291    13.388 0.257 11.627 .. 0.250 11.245 0.283 12.950 

CS 0.008 0.478 0.010     0.497 0.009 0.432 0.008 0.418 0.009 0.481 

El 0.034 1.665 0.040     1.773 0.035 1.540 0.034 1.489 0.039 1.715 

GS 0.043 1.848 0.047    1.890 0.042 1.641 0.041 1.587 0.046 1.828 

MC 0.124 5.872 0.141      6.117 0.125 5.313 0.121 5.138 0.137 5.917 

MK 0.109 4.811 0.129     5.669 0.114 4.923 0.110 4.762 0.125 5.484 

NO -0.028 -1.531 -0.034    -1.672 -0.030 -1.452 -0.029 -1.404 -0.033 -1.617 

PC -0.057 -2.929 -0.069    -3.038 -0.061 -2.638 -0.059 -2.552 -0.067 -2.939 

WK -0.098 -4.333 -0.107    -4.252 -0.095 -3.693 -0.092 -3.572 -0.104 ^.113 

RA2 0.150 0.146 0.114 0.108 0.138 


